
Analyzing the SS8 Interceptor Application
for the BlackBerry Handheld

Sheran A. Gunasekera

Zensay Labs
http://chirashi.zensay.com

E-mail: sheran@zensay.com

ABSTRACT
 This paper provides information about the BlackBerry[1]
spyware known as “Interceptor.” The software was developed
by Legal Interception company SS8[2] and was rolled out to
subscribers of the UAE Telecommunications operator,
Etisalat[3] as an update. Subscribers who had installed the
software noticed increased power consumption on their
handhelds and battery drainage that rendered handhelds usable
for shorter periods of time than normal.
 In this paper, we will analyze the source code of the
Interceptor program, review the key points that the software
tries to achieve and look at where the developers made
mistakes. It is worthwhile noting that other parties have
conducted initial research into the spyware as well.[4]

INTRODUCTION
 On or around the 8th of July 2009, BlackBerry subscribers
of the UAE based telecommunications operator received a
WAP push message prompting them to download an upgrade.
The text of the message indicated that the upgrade was
essential to the continued service of their service. Upon
installing this software, users began to notice increased battery
drainage on their phones. The effective usable time on a single
battery charged drastically dropped.
 The program that subscribers downloaded was called
“Registration.” It was available in several different file
formats. The standard BlackBerry COD file format and the
more open, Java JAR format. The JAR format is simply a
collection of Java class files and resources compressed in a
ZIP format. Simply running a standard ZIP decompressor will
reveal all files stored within the JAR archive. Even though a
COD file can be decompiled, a JAR file is far easier to work
with and can greatly improve analysis times. Thus all the
analysis was conducted on the JAR file.

ARCHIVE CONTENTS
 The Registration.jar file was first decompressed. On closer
examination of the file structure and file naming conventions,
it was immediately apparent that this application was more
than a performance upgrade. The directory structure is
depicted in Figure 1.
 By the file naming conventions, the application is more of
a message interceptor. The directory structure “com/ss8” also
provides some insight. SS8 are providers of Lawful
Interception products & services to telecommunications
providers.
 The “class” files contain compiled Java bytecode. They
can be de-compiled to reveal the original source code. To
decompile the files, the tool JAD The Java Decompiler[5] was
used.

Fig 1. Unpacking the JAR file

SOURCE CODE ANALYSIS
 Generally, there are many ways of obfuscating or rendering
Java source code unreadable. In this case, the application
developers had not performed any type of source code
obfuscation. This makes it far easier to read and analyze the
code. Starting at the program entry-point, a visual depiction of
the program flow can be summarized in Figure 2.
 The core functionality of the program can be listed as
follows:

(1)Checks to see if it is listed as visible in the BlackBerry
installed applications

(2) If it is visible, it hides itself from view of the subscriber.
This prevents a user from finding it and deleting it.

(3)It sets iterates over all the ServiceBooks[6] on the
handheld and attaches itself to each of them, looking for
received email messages and PIN messages.

(4)It intercepts and monitors the state of the handheld for
network events that occur. It notifies the service-provider’s
server when these events occur.

(5)It listens for messages received from specific addresses
either through email or BlackBerry PIN. These are control
messages that can enable or disable the interception of the
subscribers’ messages.

(6)It reports back to the predefined service-provider server
regularly.

(7)If enabled, the application will forward a copy of emails
sent out by the subscriber to the service-provider server.

Check if it is

visible in the

Installed Apps

Visible?

Set flags so that it

hides itself

Initialize and

Hook Radio and

GlobalEvents

Listen / Stay

Active

5 seconds?

1 hour?
Send Version

Info

MsgRecv?

Interrupt?

Remove Hooks &

Throw Exception

Process Cmd

NoNo
Yes

Yes

No

Yes

No

Yes

No

Yes

Fig 2. The overall program flow of the Interceptor Application

 On analysis of the source code, it was evident that this
program was no mature enough to be deployed. This is
especially relevant if Etisalat planned to conduct full-scale
legal interception on BlackBerry users.

Visibility
 One key aspect of any successful legal interception
framework is stealth. Generally, a service provider or
government will want to conduct its activities covertly. For the
sake of argument, lets take the example where a government
would like to track down activities of a terrorist cell. To be
effective, the activities of the terrorists should be monitored
without their knowledge. If they know they are being
monitored, they may alter their activities or deliberately behave
in a manner to deceive the government. To avoid this, stealth
is a key factor in the monitoring process.
 The very nature of the BlackBerry infrastructure renders it
an unsuitable medium for such legal interception. This is
especially true when you consider electronic communications
such as email or instant messaging. BlackBerry users can
enjoy secure messaging by making use of the proprietary
BlackBerry messenger[7] software that comes as part of their
handheld. To circumvent these security features, service-
providers would need to resort to installation of purpose-built
applications onto the handheld device. Thus, to ensure that the
application goes undetected and so as not to arouse suspicion,

the SS8 Interceptor application checks its visibility state on
each reboot of the handheld. If the application is visible, then
a flag is set to hide it from the applications list.
 The Interceptor application uses one of the BlackBerry’s
built in libraries known as CodeModuleGroup to set the
FLAG_HIDDEN bit to true.

Interception
 An ideal legal interception framework comprises of three
domains, the Network Entities domain, the Interception
domain and the Law Enforcement Collection and
Administration domain. To allow for comprehensive
interception, it is essential that all communications traffic for a
specific Network Entity be collected. For example, if the
Network Entity of email traffic was identified for interception,
then it is essential that the Interception domain should be
capable of intercepting both transmitted and received data.
 The version of the Interceptor application that was
analyzed was only capable of intercepting data that the
handheld transmitted. This was obviously a shortcoming by
the developer, unless it was specifically requested by either
Etisalat or the law enforcement authorities of the UAE.

Control Channel
 Another cornerstone of a legal interception framework is
for the service-provider to enable or disable interception on a
granular basis. Often, this is referred to as a control channel
where the service-provider sends specific commands to the
software. The software then takes specific action against each
of the control commands.
 The Interceptor application has a control channel built-in.
The following commands are available in the version that was
analyzed:

(1)version: sends the version details of the handheld and
Interceptor application back to the central server.

(2)bCkp: sends similar information back to the central
server, except in this case the information is tagged as a
backup.

(3)start: initiates the program and starts intercepting
outgoing messages from the handheld.

(4)stop: stops the interception of the outgoing messages on
the handheld, but the control channel still remains active.

Command Structure
 The commands can be sent through two methods, (1)
through email and (2) through the proprietary BlackBerry PIN
messaging system[8]. The command format consists of the
following structure:

<Command>[Command name]</Command>
<s>[Serial No.]</s>

To differentiate the control commands from other legitimate
communications, the following triggers are used:

For commands sent through email:
(1) The subject line will contain the word “cmd_mail” and

commands are contained in the message body as plain-text
(2) Besides (1) above, if the subject line also contains the word

“XXX” then the application treats the commands in the
message body as encrypted. The encryption key is the
unique handheld identifier or PIN[9]

For commands sent through PIN messaging:
(1) The originating PIN number should match the string

“Customer Service”
(2) The originating PIN name should match the string

“Customer Service”

For PIN message based control commands, there is no
provision for plain-text. It is encrypted by default.

PRIVACY CONCERNS
 The version of the Interceptor application that was
analyzed only intercepts outgoing email messages of accounts
configured on the handheld. No evidence was found of
interception of instant messages, BlackBerry instant messages,
phone calls, SMS messages, bluetooth data, wireless data or
GPS data.
 When the Interceptor application is installed, it is in a
dormant state by default, meaning it will not forward your sent
messages to the central server.

OBSERVATIONS
 There are several anomalies in the application that lead to
the conclusion that it was either not the version intended for
deployment; it was mistakenly rolled out or it was an early
release that was being tested.
 The reasons for such a conclusion can be argued as:
(1) No capability for intercepting incoming messages.
(2) No possibility of silently updating the application with

newer releases.
(3) Lack of comprehensive interception capabilities. Only

outgoing email messages.
(4) Several segments of unused source code and references that

have been hardcoded into the application.

 Further observations have been listed below.

Disabled Email Control Channel
 The email based control channel to send commands to the
application is disabled. On further analysis, why it was
disabled became clear. When the service-provider sends an
email message to activate the application, a copy of this control
email would also be delivered to the recipient’s email server.
Thus the user would be alerted to possible suspicious activity.

Control Channel Messages
 Control channel commands are momentarily visible when
they are received. Thus a user who happens to be looking at
his handheld screen would see a message appear for a fraction
of a second and then instantly disappear. This behavior was
observed on a BlackBerry handheld but was not apparent on
the BlackBerry handheld simulator.

Hardcoded References
 A standard program that is redistributed will usually have
some sort of constants or configuration file. The Interceptor
application did contain such a file, however the configuration
parameters from the file were not used in the execution of the
program. Instead, there were hardcoded references that were
used. This is what lead to the conclusion that this version of
the application was either a early testing version that was
mistakenly deployed or it was a badly modified version of an
original file.

Battery Drain
 The application implements a watcher on all the handheld
message folders. This watcher triggers other components
whenever a message is received. Despite this, the application
polls a function to check if a new message has been received.
This constant polling uses processing cycles and thus increases
power consumption. It is very likely that less powerful
processors may overheat due to the increased processing
activity. This is bad programming practice, especially for
handheld devices. It was also the reason users were made
suspicious of the program.

Heartbeat
 Every hour, each handheld will report its status and version
information to the central server. This happens regardless of
whether the application is intercepting messages or not. A
sample message sent to the central server is depicted in Figure

3. The image has been modified to retain formatting and hide
device specific information.

Encryption
 The Interceptor application makes use of encryption when
sending intercepted messages or receiving control commands.
It does this by encrypting outgoing messages using AES. The
keys are hardcoded into the application. For incoming control
commands, the messages are decrypted using the device PIN
as the decryption key. The encryption type is still AES.

Fig 3. Version information sent to the central server

INTERCEPTED MESSAGE
 An intercepted message is shown in Figure 4 below.
Device specific information was removed and the image was
modified to match formatting.

Fig. 4 Intercepted email message

REMOVING THE SPYWARE
 Although easy, it is not a straightforward task to remove
the spyware. The application hides itself and so is not visible
when in the applications screen. There are several ways that
this spyware can be removed or contained.
(1) Use a program to reveal the spyware. The Interceptor

application is installed on the handheld and is named
“Registration:Etisalat”. To reveal the program the
FLAG_HIDDEN bit must be set to false for the application.
Java code to accomplish this is shown in Figure 5. Zensay

Labs have released a program to do this and also provide
details of other hidden applications on the handheld. This
program can be downloaded directly to the handheld from
http://www.zensay.com/HiddenProgs.jad

Fig 5. Java Source Code to reveal a hidden program

(2) Use the JavaLoader utility to remove the software
externally. For this you will need to obtain the JavaLoader
software from RIM. The JavaLoader file can be found on
the RIM Java Development Environment[10] packages.
Connect the handheld to a PC containing the JavaLoader
software and execute the command: “javaloader -u -f
Registration.cod”

a) the -u option will tell Javaloader to connect to the
device on the USB port.

b) the -f option tells Javaloader to forcibly remove a
module even if it is presently in use.

c) Registration.cod is the name under which the
spyware module is installed.

(3) A full wipe and reinstallation of the handheld can also
remove the spyware.

LESSONS TO BE LEARNED
 Rolling out legal interception software is something that
has to be done with good planning, preparation and
management. A deployment of this nature should always work
under the common assumption: “There will be no second
chance.” Thus, the software that will be pushed to subscribers
has to be near perfect. At best the software should:
(1) Do no harm. The legal interception software should not be

easily compromised by an attacker who knows about it.
Essentially this is a backdoor providing near full access to
people’s handhelds. Therefore the software should be
secure.

(2) Be thoroughly tested. Doing things like draining user’s
batteries is a sure way of alerting them to suspicious
activity. The software should be tested on a limited set of
handhelds for a few weeks to resolve any issues that may
surface with extended testing. The entire system should be
tested and retested several times. The software developers
should be highly experienced in mobile development.
Making trivial mistakes like polling so often that the
battery drains is certainly a sign of bad programming and
lack of testing.

A service-provider should always be prepared for the worst. In
case things do not work out as planned, there needs to be a
dedicated PR team who is ready to step up and deal with the
public. User’s should not be lied to or ignored, they will
accept it better if they know the provider is well within legal
rights to perform such interception. The final decision will be
left to them.

FUTURE PROTECTION
 Now that the software has been analyzed and its techniques
have been identified, there are several practices that a user can
adopt to be vigilant. Possibly the two most common practices
would be to set the phone’s default permissions and to
constantly monitor all programs on the handheld.

Default Permissions
 BlackBerry handhelds are often held as the icon of secure,
enterprise communications devices. They are equipped with a
range of security features. One such feature is the Default
Permissions option. These permissions allow a user to turn off

access to (1) Connections, (2) Interactions and (3) User Data
by default when a new program is installed. These features can
be accessed on the handheld by navigating to:

Options > Advanced Options > Applications > Menu > Edit
Default Permissions

Truly paranoid users may want to set all to disable. This does
mean that they will have to fine-tune the permissions whenever
a new application is installed, but this does provide some peace
of mind because an alert is displayed each time an application
requests access to the Internet or personal data.

Monitoring Hidden Programs
 While the arena for BlackBerry forensics and spyware is
still somewhat limited, Zensay Labs is focusing on this area to
provide some further information on the subject. With the
release of the HiddenProgs tool, users can examine what other
programs have hidden themselves and identify potentially
suspicious programs. They can then continue to uninstall the
suspicious software manually with the JavaLoader tool or they
can contact Zensay Labs directly for assistance. With
continued research, the HiddenProgs tool will evolve into a
more comprehensive spyware detector and disabler.

REFERENCES
 [1] BlackBerry : RIM BlackBerry http://
www.blackberry.com
 [2] SS8: Legal Interception Solutions, http://www.ss8.com
 [3] Etisalat: Emirates Telecommunications Corporation,
http://www.etisalat.ae
 [4] Chris Eng, Veracode, BlackBerry Spyware Dissected,
http://www.veracode.com/blog/2009/07/blackberry-spyware-
dissected/
 [5] JAD - The Java Decompiler, by Thomas Varaneckas,
http://www.varaneckas.com/jad
 [6] Service Books: http://na.blackberry.com/eng/
deliverables/2584/about_service_books_32170_11.jsp and
http://www.berryreview.com/2009/01/22/faq-explanation-of-
each-blackberry-service-book-type/
 [7] BlackBerry Messenger: http://na.blackberry.com/eng/
devices/features/im/blackberry_messenger.jsp
 [8] BlackBerry PIN Messaging System: http://
forums.pinstack.com/showthread.php?
s=60879514238665e850a4497790d9ab00&t=35
 [9] BlackBerry PIN: See [7]
 [10] BlackBery JDE: http://na.blackberry.com/eng/
developers/javaappdev/javadevenv.jsp

